
Correspondences

Functions are single-valued. For a function f : X → Y , every x ∈ X is mapped

to one and only one point y ∈ Y , the point y = f(x). Thus, for example, when a

consumer with a strictly quasiconcave utility function behaves according to the Utility

Maximization Hypothesis, we can summarize his market behavior by his demand

function: the bundle he chooses is a (single-valued) function of the price-list he faces.

But suppose the consumer’s utility function is not strictly quasiconcave; for ex-

ample, suppose it is u(x1, x2) = ax1 + x2. Whenever the price-list satisfies p1 =

ap2, this consumer is indifferent among all the bundles on the indifference curve

{x ∈ R2
+ | ax1 + x2 = ax̊1 + x̊2 }. He will of course choose a single bundle, but we

can’t say which one it will be. We can say only that it will be one of the many

utility-maximizing bundles.

This situation, in which we need to analyze behavior that does not manifest itself

in uniquely determined actions, is extremely common in economics and game theory.

And of course, if individuals’ behavior is not single-valued, then aggregate behav-

ior won’t be single-valued either. In the demand theory example above, the market

demand function will not be single-valued. We need a new analytical tool, the mul-

tivalued function or correspondence.

Definition: A correspondence f from a set X to a set Y , denoted f : X →→ Y , is

a function from X to the set 2Y of all subsets of Y . Correspondences are also called

multivalued functions.

Remark: A correspondence f : X →→ Y is thus a set-valued function from X to Y

— for every x ∈ X, f(x) is a subset of Y .

Example 1: f : R+ →→ R is defined by f(x) = {
√

x,−
√

x}.

Example 2: f : R+ →→ R is defined by

f(x) =

{
[0, 1

x
] if x > 0

∅ if x = 0.
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Example 3: f : R+ →→ [0, 1] is defined by

f(x) =


[x, 1

2
] if 0 5 x 5 1

2

{1
4
, 1

2
} ∪ [3

4
, 1] if x = 1

2

{1
4
} ∪ [3

4
, 1] if x = 1

2

Definition: The graph of a correspondence f : X →→ Y , denoted Gr(f), is the set

Gr(f) := {(x, y) ∈ X × Y | y ∈ f(x) }.

Exercise: Draw Gr(f) for each of the three examples given above.

Two continuity properties are important for correspondences:

Definition: A correspondence f : X →→ Y has a closed graph if Gr(f) is a closed

subset of X × Y .

Remark: A correspondence thus has a closed graph if and only if it satisfies the

following condition: if {xn} and {yn} are sequences in X and Y such that yn ∈ f(xn)

for each n, and if {xn} → x and {yn} → y, then y ∈ f(x).

Definition: If Y is a compact set, a correspondence f : X →→ Y is continuous

if ∀x ∈ X : f(x) 6= ∅ and if f has a closed graph and also satisfies the following

condition:

(LHC) for every (x, y) ∈ Gr(f) and every sequence {xn} → x there is

a sequence {yn} that satisfies both

(1) ∀n : yn ∈ f(xn) and (2) {yn} → y.

Correspondences that satisfy the condition (LHC) are called lower hemicontinuous.

Thus, a correspondence with a compact target space is continuous if and only if it is

nonempty-valued, has a closed graph, and is lower hemicontinuous.

Example 1 above has a closed graph and satisfies (LHC) but its target space is not

compact. Example 2 satisfies (LHC) but does not have a closed graph. Example 3 is

continuous.
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Example 4: f : [0, 1] →→ [0, 1] is defined by

f(x) =

{
[.3, .7] if x 5 1

2

{1
2
} if x > 1

2
.

The correspondence in Example 4 has a closed graph but is not continuous (the

condition (LHC) is violated).

Example 5: f : R+ →→ R is defined by

f(x) =

{
{ 1

x
} if x > 0

{0} if x = 0.

This correspondence is singleton-valued (each of its images f(x) is a singleton). If

we regarded its images as points rather than sets (remove the curly brackets in the

definition), f would be a regular (single-valued) function from R+ into R, and clearly a

discontinuous function. But as a correspondence it is nonempty-valued, has a closed

graph, and satisfies (LHC); however, it is not a continuous correspondence — its

target space is not compact.

Exercise: Draw Gr(f) for Examples 4 and 5, and verify the claims made above about

Examples 1 to 5 having closed graphs or not and satisfying (LHC) or not.

Definition: A fixed point of a correspondence f : X →→ Y is an x̂ ∈ X for which

x̂ ∈ f(x̂).

The most commonly used generalization of Brouwer’s Theorem is Kakutani’s Fixed

Point Theorem:

Kakutani’s Theorem: Let f : S →→ S be a correspondence. If S is nonempty,

compact, and convex, and if f is nonempty-valued, convex-valued, and has a closed

graph, then f has a fixed point.

When we say that f is nonempty-valued and convex-valued, we mean that f(s) is a

nonempty convex set for every s ∈ S.
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Example 6: f : [0, 1] →→ [0, 1] is defined by

f(x) =


[.6, .8] if x < 1

2

[.2, .8] if x = 1
2

[.2, .4] if x > 1
2
.

The correspondence in Example 6 is convex-valued and has a closed graph, and it

therefore has a fixed point. Its unique fixed point is x̂ = 1
2
.

Example 7: f : [0, 1] →→ [0, 1] is defined by

f(x) =

{
{.7} if x < 1

2

[.2, .4] if x = 1
2
.

The correspondence in Example 7 has no fixed point. The correspondence is convex-

valued but does not have a closed graph: it’s discontinuous at x = 1
2
.

Example 8: f : [0, 1] →→ [0, 1] is defined by

f(x) =


[.6, .8] if x < 1

2

[.2, .4] ∪ [.6, .8] if x = 1
2

[.2, .4] if x > 1
2
.

The correspondence in Example 8 has no fixed point. The correspondence has a

closed graph but is not convex-valued: it’s convex-valued at every x except x = 1
2
.

Economic models of individual behavior generally assume optimizing behavior. We

typically use the classical Weierstrass Theorem (“a continuous function on a compact

set attains a maximum”) to infer that there is actually an optimizing action avail-

able for the individual to choose. Is the individual’s behavior continuous? That is,

does the individual’s chosen action respond continuously to changes in his environ-

ment? When we have a specific functional form for the objective function (e.g., a

Cobb-Douglas utility function), we can often obtain a closed-form expression for the

behavioral function and determine directly whether it’s continuous. Even when we

can’t obtain a closed-form behavioral function, if the objective function is differen-

tiable we can generally apply the Implicit Function Theorem to establish continuity

(and even differentiability) of the behavioral function.
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The preceding paragraph implicitly assumed that the individual’s behavior is de-

scribed by a single-valued function — that the optimizing action is always unique.

We now have correspondences at our disposal, so we can now deal as well with sit-

uations in which the optimizing action is not unique — in which the behavioral

function is actually a correspondence. The Maximum Theorem is used pervasively in

economics and game theory to infer that behavioral correspondences are continuous

(in the sense that they have closed graphs) when the underlying objective function

and environment satisfy certain conditions.

In applications of the Maximum Theorem, the set X in the statement of the theo-

rem below is typically the action space; Y is the set of possible environments (the

parameter space); the function u is the objective function; the correspondence ϕ de-

scribes how the set of available actions depends upon the environment; and µ is the

behavioral correspondence, describing how the individual’s actions depend upon the

environment he faces. In demand theory, for example, X would be the consumption

set (or a compact subset of it); Y would be the set of possible price-lists (and possibly

wealth/income levels); u would be the consumer’s utility function; ϕ would be the

correspondence that determines the budget set from the market prices; and µ would

be the consumer’s demand correspondence.

The Maximum Theorem: Let X be a compact subset of Rl; let Y be a subset of

Rl; let u : X ×Y → R be a continuous function; and let ϕ : Y →→ X be a continuous

correspondence. Then the correspondence µ : Y →→ X defined by

µ(y) = { x ∈ ϕ(y) | x maximizes u on ϕ(y) }

has a closed graph.

Note that the domain of the objective function u includes not only actions (consump-

tion bundles, in the demand application) but parameters as well (price-lists, in the

demand application). This seems odd at first glance. There are three observations to

be made about this:

(1) In the demand theory application we typically assume that u is constant with

respect to the parameters y ∈ Y — the prices. So for this application a Maximum

Theorem in which u depends only upon consumption bundles in X would be just fine.
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(2) Including the prices as arguments of u does, however, allow us to analyze con-

sumers whose utility depends upon prices as well as consumption levels.

(3) The theory of the firm is an example of an application where we need to have

the objective function u depend upon the parameters. In this application, the ele-

ments of X are the firm’s feasible production plans, i.e., input-output combinations.

The elements of Y are again price-lists. The objective function u is the firm’s profit

function — and note that profit does depend upon both the firm’s choice of pro-

duction plan (in X) and the market prices (in Y ). The correspondence ϕ describes

how the available plans depend upon prices — typically, this is assumed to be a

constant correspondence: the production plans available to the firm depend upon

its technological capabilities but not upon prices. And of course the correspondence

µ describes how the firm’s profit-maximizing choices of input and output levels de-

pend upon the market prices — the firm’s supply correspondence for outputs and its

demand correspondence for inputs.

Some useful facts about correspondences are provided here. Their proofs are straight-

forward and are good exercises for understanding correspondences.

Theorem: If Y is compact and the correspondences f : X →→ Y and g : X →→ Y

both have closed graphs, then the sum f + g also has a closed graph, where f + g is

the correspondence defined by

(f + g)(x) := { y1 + y2 ∈ Y | y1 ∈ f(x) and y2 ∈ g(x) }.

Theorem: If Y and Z are compact and the correspondences f : X →→ Y and

g : Y →→ Z both have closed graphs, then the composition f ◦ g also has a closed

graph, where f ◦ g is the correspondence defined by

(f◦g)(x) := g(f(x)) := { z ∈ Z | ∃y ∈ Y : y ∈ f(x) & z ∈ g(y) } =
⋃

{ g(y) | y ∈ f(x) }.
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